rtic/rtic-monotonics/src/imxrt.rs

301 lines
11 KiB
Rust
Raw Normal View History

2023-11-01 12:13:25 +01:00
//! [`Monotonic`] impl for the i.MX RT.
//!
//! # Example
//!
//! ```
//! use rtic_monotonics::imxrt::*;
//! use rtic_monotonics::imxrt::Gpt1 as Mono;
//!
//! fn init() {
//! // Obtain ownership of the timer register block
//! let gpt1 = unsafe { imxrt_ral::gpt::GPT1::instance() };
//!
//! // Configure the timer clock source and determine its tick rate
//! let timer_tickrate_hz = 1_000_000;
//!
//! // Generate timer token to ensure correct timer interrupt handler is used
//! let token = rtic_monotonics::create_imxrt_gpt1_token!();
//!
//! // Start the monotonic
//! Mono::start(timer_tickrate_hz, gpt1, token);
//! }
//!
//! async fn usage() {
//! loop {
//! // Use the monotonic
//! let timestamp = Mono::now().ticks();
//! Mono::delay(100.millis()).await;
//! }
//! }
//! ```
use crate::{Monotonic, TimeoutError, TimerQueue};
use atomic_polyfill::{compiler_fence, AtomicU32, Ordering};
pub use fugit::{self, ExtU64};
use imxrt_ral as ral;
const TIMER_HZ: u32 = 1_000_000;
#[doc(hidden)]
#[macro_export]
macro_rules! __internal_create_imxrt_timer_interrupt {
($mono_timer:ident, $timer:ident, $timer_token:ident) => {{
#[no_mangle]
#[allow(non_snake_case)]
unsafe extern "C" fn $timer() {
$crate::imxrt::$mono_timer::__tq().on_monotonic_interrupt();
}
pub struct $timer_token;
unsafe impl $crate::InterruptToken<$crate::imxrt::$mono_timer> for $timer_token {}
$timer_token
}};
}
/// Register GPT1 interrupt for the monotonic.
#[cfg(feature = "imxrt_gpt1")]
#[macro_export]
macro_rules! create_imxrt_gpt1_token {
() => {{
$crate::__internal_create_imxrt_timer_interrupt!(Gpt1, GPT1, Gpt1Token)
}};
}
/// Register GPT2 interrupt for the monotonic.
#[cfg(feature = "imxrt_gpt2")]
#[macro_export]
macro_rules! create_imxrt_gpt2_token {
() => {{
$crate::__internal_create_imxrt_timer_interrupt!(Gpt2, GPT2, Gpt2Token)
}};
}
// Credits to the `time-driver` of `embassy-stm32`.
//
// Clock timekeeping works with something we call "periods", which are time intervals
// of 2^31 ticks. The Clock counter value is 32 bits, so one "overflow cycle" is 2 periods.
//
// A `period` count is maintained in parallel to the Timer hardware `counter`, like this:
// - `period` and `counter` start at 0
// - `period` is incremented on overflow (at counter value 0)
// - `period` is incremented "midway" between overflows (at counter value 0x8000_0000)
//
// Therefore, when `period` is even, counter is in 0..0x7FFF_FFFF. When odd, counter is in 0x8000_0000..0xFFFF_FFFF
// This allows for now() to return the correct value even if it races an overflow.
//
// To get `now()`, `period` is read first, then `counter` is read. If the counter value matches
// the expected range for the `period` parity, we're done. If it doesn't, this means that
// a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value
// corresponds to the next period.
//
// `period` is a 32bit integer, so it overflows on 2^32 * 2^31 / 1_000_000 seconds of uptime, which is 292471 years.
fn calc_now(period: u32, counter: u32) -> u64 {
(u64::from(period) << 31) + u64::from(counter ^ ((period & 1) << 31))
}
macro_rules! make_timer {
($mono_name:ident, $timer:ident, $period:ident, $tq:ident$(, doc: ($($doc:tt)*))?) => {
/// Monotonic timer queue implementation.
$(
#[cfg_attr(docsrs, doc(cfg($($doc)*)))]
)?
pub struct $mono_name;
use ral::gpt::$timer;
/// Number of 2^31 periods elapsed since boot.
static $period: AtomicU32 = AtomicU32::new(0);
static $tq: TimerQueue<$mono_name> = TimerQueue::new();
impl $mono_name {
/// Starts the monotonic timer.
/// - `tick_freq_hz`: The tick frequency of the given timer.
/// - `gpt`: The GPT timer register block instance.
/// - `_interrupt_token`: Required for correct timer interrupt handling.
/// This method must be called only once.
pub fn start(tick_freq_hz: u32, gpt: $timer, _interrupt_token: impl crate::InterruptToken<Self>) {
// Find a prescaler that creates our desired tick frequency
let previous_prescaler = ral::read_reg!(ral::gpt, gpt, PR, PRESCALER) + 1;
let previous_clock_freq = tick_freq_hz * previous_prescaler;
assert!((previous_clock_freq % TIMER_HZ) == 0,
"Unable to find a fitting prescaler value!\n Input: {}/{}\n Desired: {}",
previous_clock_freq, previous_prescaler, TIMER_HZ);
let prescaler = previous_clock_freq / TIMER_HZ;
assert!(prescaler > 0);
assert!(prescaler <= 4096);
// Disable the timer.
ral::modify_reg!(ral::gpt, gpt, CR, EN: 0);
// Clear all status registers.
ral::write_reg!(ral::gpt, gpt, SR, 0b11_1111);
// Base configuration
ral::modify_reg!(ral::gpt, gpt, CR,
ENMOD: 1, // Clear timer state
FRR: 1, // Free-Run mode
);
// Reset period
$period.store(0, Ordering::Relaxed);
// Prescaler
ral::modify_reg!(ral::gpt, gpt, PR,
PRESCALER: (prescaler - 1), // Scale to our desired clock rate
);
// Enable interrupts
ral::write_reg!(ral::gpt, gpt, IR,
ROVIE: 1, // Rollover interrupt
OF1IE: 1, // Timer compare 1 interrupt (for half-periods)
OF2IE: 1, // Timer compare 2 interrupt (for dynamic wakeup)
);
// Configure half-period interrupt
ral::write_reg!(ral::gpt, gpt, OCR[0], 0x8000_0000);
// Dynamic interrupt register; for now initialize to zero
// so it gets combined with rollover interrupt
ral::write_reg!(ral::gpt, gpt, OCR[1], 0x0000_0000);
// Enable the timer
ral::modify_reg!(ral::gpt, gpt, CR, EN: 1);
ral::modify_reg!(ral::gpt, gpt, CR,
ENMOD: 0, // Keep state when disabled
);
$tq.initialize(Self {});
// SAFETY: We take full ownership of the peripheral and interrupt vector,
// plus we are not using any external shared resources so we won't impact
// basepri/source masking based critical sections.
unsafe {
crate::set_monotonic_prio(ral::NVIC_PRIO_BITS, ral::Interrupt::$timer);
cortex_m::peripheral::NVIC::unmask(ral::Interrupt::$timer);
}
}
/// Used to access the underlying timer queue
#[doc(hidden)]
pub fn __tq() -> &'static TimerQueue<$mono_name> {
&$tq
}
/// Delay for some duration of time.
#[inline]
pub async fn delay(duration: <Self as Monotonic>::Duration) {
$tq.delay(duration).await;
}
/// Timeout at a specific time.
pub async fn timeout_at<F: core::future::Future>(
instant: <Self as rtic_time::Monotonic>::Instant,
future: F,
) -> Result<F::Output, TimeoutError> {
$tq.timeout_at(instant, future).await
}
/// Timeout after a specific duration.
#[inline]
pub async fn timeout_after<F: core::future::Future>(
duration: <Self as Monotonic>::Duration,
future: F,
) -> Result<F::Output, TimeoutError> {
$tq.timeout_after(duration, future).await
}
/// Delay to some specific time instant.
#[inline]
pub async fn delay_until(instant: <Self as Monotonic>::Instant) {
$tq.delay_until(instant).await;
}
}
#[cfg(feature = "embedded-hal-async")]
impl embedded_hal_async::delay::DelayUs for $mono_name {
#[inline]
async fn delay_us(&mut self, us: u32) {
Self::delay((us as u64).micros()).await;
}
#[inline]
async fn delay_ms(&mut self, ms: u32) {
Self::delay((ms as u64).millis()).await;
}
}
impl embedded_hal::delay::DelayUs for $mono_name {
fn delay_us(&mut self, us: u32) {
let done = Self::now() + (us as u64).micros();
while Self::now() < done {}
}
}
impl Monotonic for $mono_name {
type Instant = fugit::TimerInstantU64<TIMER_HZ>;
type Duration = fugit::TimerDurationU64<TIMER_HZ>;
const ZERO: Self::Instant = Self::Instant::from_ticks(0);
fn now() -> Self::Instant {
let gpt = unsafe{ $timer::instance() };
// Important: period **must** be read first.
let period = $period.load(Ordering::Relaxed);
compiler_fence(Ordering::Acquire);
let counter = ral::read_reg!(ral::gpt, gpt, CNT);
Self::Instant::from_ticks(calc_now(period, counter))
}
fn set_compare(instant: Self::Instant) {
let gpt = unsafe{ $timer::instance() };
// Set the timer regardless of whether it is multiple periods in the future,
// or even already in the past.
// The worst thing that can happen is a spurious wakeup, and with a timer
// period of half an hour, this is hardly a problem.
let ticks = instant.duration_since_epoch().ticks();
let ticks_wrapped = ticks as u32;
ral::write_reg!(ral::gpt, gpt, OCR[1], ticks_wrapped);
}
fn clear_compare_flag() {
let gpt = unsafe{ $timer::instance() };
ral::write_reg!(ral::gpt, gpt, SR, OF2: 1);
}
fn pend_interrupt() {
cortex_m::peripheral::NVIC::pend(ral::Interrupt::$timer);
}
fn on_interrupt() {
let gpt = unsafe{ $timer::instance() };
let (rollover, half_rollover) = ral::read_reg!(ral::gpt, gpt, SR, ROV, OF1);
if rollover != 0 {
$period.fetch_add(1, Ordering::Relaxed);
ral::write_reg!(ral::gpt, gpt, SR, ROV: 1);
}
if half_rollover != 0 {
$period.fetch_add(1, Ordering::Relaxed);
ral::write_reg!(ral::gpt, gpt, SR, OF1: 1);
}
}
}
};
}
#[cfg(feature = "imxrt_gpt1")]
make_timer!(Gpt1, GPT1, GPT1_HALFPERIODS, GPT1_TQ);
#[cfg(feature = "imxrt_gpt2")]
make_timer!(Gpt2, GPT2, GPT2_HALFPERIODS, GPT2_TQ);