Add rtic-timer (timerqueue + monotonic) and rtic-monotonics (systick-monotonic)

This commit is contained in:
Emil Fresk 2023-01-23 20:05:47 +01:00 committed by Henrik Tjäder
parent 6bbcfbec4d
commit 4f5eaee21e
276 changed files with 607 additions and 713 deletions

View file

@ -1,121 +0,0 @@
//! examples/cfg-monotonic.rs
#![deny(unsafe_code)]
#![deny(warnings)]
#![deny(missing_docs)]
#![no_main]
#![no_std]
use panic_semihosting as _;
#[rtic::app(device = lm3s6965, dispatchers = [SSI0, QEI0])]
mod app {
use cortex_m_semihosting::{debug, hprintln};
use systick_monotonic::*; // Implements the `Monotonic` trait
// A monotonic timer to enable scheduling in RTIC
#[cfg(feature = "killmono")]
#[monotonic(binds = SysTick, default = true)]
type MyMono = Systick<100>; // 100 Hz / 10 ms granularity
// Not allowed by current rtic-syntax:
// error: `#[monotonic(...)]` on a specific type must appear at most once
// --> examples/cfg-monotonic.rs:23:10
// |
// 23 | type MyMono = Systick<100>; // 100 Hz / 10 ms granularity
// | ^^^^^^
// #[monotonic(binds = SysTick, default = true)]
// type MyMono = Systick<100>; // 100 Hz / 10 ms granularity
// Not allowed by current rtic-syntax:
// error: this interrupt is already bound
// --> examples/cfg-monotonic.rs:31:25
// |
// 31 | #[monotonic(binds = SysTick, default = true)]
// | ^^^^^^^
// #[monotonic(binds = SysTick, default = true)]
// type MyMono2 = DwtSystick<100>; // 100 Hz / 10 ms granularity
// Resources shared between tasks
#[shared]
struct Shared {
s1: u32,
s2: i32,
}
// Local resources to specific tasks (cannot be shared)
#[local]
struct Local {
l1: u8,
l2: i8,
}
#[init]
fn init(cx: init::Context) -> (Shared, Local, init::Monotonics) {
let _systick = cx.core.SYST;
// Initialize the monotonic (SysTick rate in QEMU is 12 MHz)
#[cfg(feature = "killmono")]
let mono = Systick::new(systick, 12_000_000);
// Spawn the task `foo` directly after `init` finishes
foo::spawn().unwrap();
debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator
(
// Initialization of shared resources
Shared { s1: 0, s2: 1 },
// Initialization of task local resources
Local { l1: 2, l2: 3 },
// Move the monotonic timer to the RTIC run-time, this enables
// scheduling
#[cfg(feature = "killmono")]
init::Monotonics(mono),
init::Monotonics(),
)
}
// Background task, runs whenever no other tasks are running
#[idle]
fn idle(_: idle::Context) -> ! {
loop {
continue;
}
}
// Software task, not bound to a hardware interrupt.
// This task takes the task local resource `l1`
// The resources `s1` and `s2` are shared between all other tasks.
#[task(shared = [s1, s2], local = [l1])]
fn foo(_: foo::Context) {
// This task is only spawned once in `init`, hence this task will run
// only once
hprintln!("foo");
}
// Software task, also not bound to a hardware interrupt
// This task takes the task local resource `l2`
// The resources `s1` and `s2` are shared between all other tasks.
#[task(shared = [s1, s2], local = [l2])]
fn bar(_: bar::Context) {
hprintln!("bar");
// Run `bar` once per second
// bar::spawn_after(1.secs()).unwrap();
}
// Hardware task, bound to a hardware interrupt
// The resources `s1` and `s2` are shared between all other tasks.
#[task(binds = UART0, priority = 3, shared = [s1, s2])]
fn uart0_interrupt(_: uart0_interrupt::Context) {
// This task is bound to the interrupt `UART0` and will run
// whenever the interrupt fires
// Note that RTIC does NOT clear the interrupt flag, this is up to the
// user
hprintln!("UART0 interrupt!");
}
}

View file

@ -1,4 +0,0 @@
// NOTE these tests are specific to the Cortex-M port; `rtic-syntax` has a more extensive test suite
// that tests functionality common to all the RTIC ports
mod single;

View file

@ -1,40 +0,0 @@
use quote::quote;
use rtic_syntax::Settings;
#[test]
fn analyze() {
let mut settings = Settings::default();
settings.parse_extern_interrupt = true;
let (app, analysis) = rtic_syntax::parse2(
// First interrupt is assigned to the highest priority dispatcher
quote!(device = pac, dispatchers = [B, A]),
quote!(
mod app {
#[shared]
struct Shared {}
#[local]
struct Local {}
#[init]
fn init(_: init::Context) -> (Shared, Local, init::Monotonics) {
(Shared {}, Local {}, init::Monotonics())
}
#[task(priority = 1)]
fn a(_: a::Context) {}
#[task(priority = 2)]
fn b(_: b::Context) {}
}
),
settings,
)
.unwrap();
let analysis = crate::analyze::app(analysis, &app);
let interrupts = &analysis.interrupts;
assert_eq!(interrupts.len(), 2);
assert_eq!(interrupts[&2].0.to_string(), "B");
assert_eq!(interrupts[&1].0.to_string(), "A");
}

6
rtic-monotonics/.gitignore vendored Normal file
View file

@ -0,0 +1,6 @@
**/*.rs.bk
.#*
.gdb_history
/target
Cargo.lock
*.hex

View file

@ -0,0 +1,12 @@
[package]
name = "rtic-timer"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
cortex-m = { version = "0.7.6" }
embedded-hal-async = "0.2.0-alpha.0"
fugit = { version = "0.3.6", features = ["defmt"] }
rtic-timer = { version = "1.0.0", path = "../rtic-timer" }

View file

@ -0,0 +1,11 @@
//! Crate
#![no_std]
#![no_main]
#![deny(missing_docs)]
#![allow(incomplete_features)]
#![feature(async_fn_in_trait)]
pub use rtic_timer::{Monotonic, TimeoutError, TimerQueue};
pub mod systick_monotonic;

View file

@ -0,0 +1 @@
//! ...

6
rtic-timer/.gitignore vendored Normal file
View file

@ -0,0 +1,6 @@
**/*.rs.bk
.#*
.gdb_history
/target
Cargo.lock
*.hex

View file

@ -1,11 +1,10 @@
[package]
name = "rtic-timer"
version = "0.1.0"
version = "1.0.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
cortex-m = "0.7.6"
rtic-monotonic = "1.0.0"
fugit = "0.3.6"
critical-section = "1"
futures-util = { version = "0.3.25", default-features = false }

View file

@ -0,0 +1,4 @@
[toolchain]
channel = "nightly"
components = [ "rust-src", "rustfmt", "llvm-tools-preview" ]
targets = [ "thumbv6m-none-eabi", "thumbv7m-none-eabi" ]

View file

@ -1,138 +1,336 @@
//! Crate
#![no_std]
#![no_main]
#![deny(missing_docs)]
#![allow(incomplete_features)]
#![feature(async_fn_in_trait)]
use core::sync::atomic::{AtomicU32, Ordering};
use core::{cmp::Ordering, task::Waker};
use cortex_m::peripheral::{syst::SystClkSource, SYST};
pub use fugit::{self, ExtU64};
pub use rtic_monotonic::Monotonic;
pub mod monotonic;
mod sll;
use sll::{IntrusiveSortedLinkedList, Min as IsslMin, Node as IntrusiveNode};
use core::future::{poll_fn, Future};
use core::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use core::task::{Poll, Waker};
use futures_util::{
future::{select, Either},
pin_mut,
};
pub use monotonic::Monotonic;
pub struct Timer {
cnt: AtomicU32,
// queue: IntrusiveSortedLinkedList<'static, WakerNotReady<Mono>, IsslMin>,
mod linked_list;
use linked_list::{Link, LinkedList};
/// Holds a waker and at which time instant this waker shall be awoken.
struct WaitingWaker<Mono: Monotonic> {
waker: Waker,
release_at: Mono::Instant,
}
#[allow(non_snake_case)]
#[no_mangle]
fn SysTick() {
// ..
let cnt = unsafe {
static mut CNT: u32 = 0;
&mut CNT
};
*cnt = cnt.wrapping_add(1);
}
/// Systick implementing `rtic_monotonic::Monotonic` which runs at a
/// settable rate using the `TIMER_HZ` parameter.
pub struct Systick<const TIMER_HZ: u32> {
systick: SYST,
cnt: u64,
}
impl<const TIMER_HZ: u32> Systick<TIMER_HZ> {
/// Provide a new `Monotonic` based on SysTick.
///
/// The `sysclk` parameter is the speed at which SysTick runs at. This value should come from
/// the clock generation function of the used HAL.
///
/// Notice that the actual rate of the timer is a best approximation based on the given
/// `sysclk` and `TIMER_HZ`.
pub fn new(mut systick: SYST, sysclk: u32) -> Self {
// + TIMER_HZ / 2 provides round to nearest instead of round to 0.
// - 1 as the counter range is inclusive [0, reload]
let reload = (sysclk + TIMER_HZ / 2) / TIMER_HZ - 1;
assert!(reload <= 0x00ff_ffff);
assert!(reload > 0);
systick.disable_counter();
systick.set_clock_source(SystClkSource::Core);
systick.set_reload(reload);
Systick { systick, cnt: 0 }
}
}
impl<const TIMER_HZ: u32> Monotonic for Systick<TIMER_HZ> {
const DISABLE_INTERRUPT_ON_EMPTY_QUEUE: bool = false;
type Instant = fugit::TimerInstantU64<TIMER_HZ>;
type Duration = fugit::TimerDurationU64<TIMER_HZ>;
fn now(&mut self) -> Self::Instant {
if self.systick.has_wrapped() {
self.cnt = self.cnt.wrapping_add(1);
}
Self::Instant::from_ticks(self.cnt)
}
unsafe fn reset(&mut self) {
self.systick.clear_current();
self.systick.enable_counter();
}
#[inline(always)]
fn set_compare(&mut self, _val: Self::Instant) {
// No need to do something here, we get interrupts anyway.
}
#[inline(always)]
fn clear_compare_flag(&mut self) {
// NOOP with SysTick interrupt
}
#[inline(always)]
fn zero() -> Self::Instant {
Self::Instant::from_ticks(0)
}
#[inline(always)]
fn on_interrupt(&mut self) {
if self.systick.has_wrapped() {
self.cnt = self.cnt.wrapping_add(1);
impl<Mono: Monotonic> Clone for WaitingWaker<Mono> {
fn clone(&self) -> Self {
Self {
waker: self.waker.clone(),
release_at: self.release_at,
}
}
}
struct WakerNotReady<Mono>
where
Mono: Monotonic,
{
pub waker: Waker,
pub instant: Mono::Instant,
pub marker: u32,
}
impl<Mono> Eq for WakerNotReady<Mono> where Mono: Monotonic {}
impl<Mono> Ord for WakerNotReady<Mono>
where
Mono: Monotonic,
{
fn cmp(&self, other: &Self) -> Ordering {
self.instant.cmp(&other.instant)
}
}
impl<Mono> PartialEq for WakerNotReady<Mono>
where
Mono: Monotonic,
{
impl<Mono: Monotonic> PartialEq for WaitingWaker<Mono> {
fn eq(&self, other: &Self) -> bool {
self.instant == other.instant
self.release_at == other.release_at
}
}
impl<Mono> PartialOrd for WakerNotReady<Mono>
where
Mono: Monotonic,
{
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
impl<Mono: Monotonic> PartialOrd for WaitingWaker<Mono> {
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
self.release_at.partial_cmp(&other.release_at)
}
}
/// A generic timer queue for async executors.
///
/// # Blocking
///
/// The internal priority queue uses global critical sections to manage access. This means that
/// `await`ing a delay will cause a lock of the entire system for O(n) time. In practice the lock
/// duration is ~10 clock cycles per element in the queue.
///
/// # Safety
///
/// This timer queue is based on an intrusive linked list, and by extension the links are strored
/// on the async stacks of callers. The links are deallocated on `drop` or when the wait is
/// complete.
///
/// Do not call `mem::forget` on an awaited future, or there will be dragons!
pub struct TimerQueue<Mono: Monotonic> {
queue: LinkedList<WaitingWaker<Mono>>,
initialized: AtomicBool,
}
/// This indicates that there was a timeout.
pub struct TimeoutError;
impl<Mono: Monotonic> TimerQueue<Mono> {
/// Make a new queue.
pub const fn new() -> Self {
Self {
queue: LinkedList::new(),
initialized: AtomicBool::new(false),
}
}
/// Forwards the `Monotonic::now()` method.
#[inline(always)]
pub fn now(&self) -> Mono::Instant {
Mono::now()
}
/// Takes the initialized monotonic to initialize the TimerQueue.
pub fn initialize(&self, monotonic: Mono) {
self.initialized.store(true, Ordering::SeqCst);
// Don't run drop on `Mono`
core::mem::forget(monotonic);
}
/// Call this in the interrupt handler of the hardware timer supporting the `Monotonic`
///
/// # Safety
///
/// It's always safe to call, but it must only be called from the interrupt of the
/// monotonic timer for correct operation.
pub unsafe fn on_monotonic_interrupt(&self) {
Mono::clear_compare_flag();
Mono::on_interrupt();
loop {
let mut release_at = None;
let head = self.queue.pop_if(|head| {
release_at = Some(head.release_at);
Mono::now() >= head.release_at
});
match (head, release_at) {
(Some(link), _) => {
link.waker.wake();
}
(None, Some(instant)) => {
Mono::enable_timer();
Mono::set_compare(instant);
if Mono::now() >= instant {
// The time for the next instant passed while handling it,
// continue dequeueing
continue;
}
break;
}
(None, None) => {
// Queue is empty
Mono::disable_timer();
break;
}
}
}
}
/// Timeout at a specific time.
pub async fn timeout_at<F: Future>(
&self,
instant: Mono::Instant,
future: F,
) -> Result<F::Output, TimeoutError> {
let delay = self.delay_until(instant);
pin_mut!(future);
pin_mut!(delay);
match select(future, delay).await {
Either::Left((r, _)) => Ok(r),
Either::Right(_) => Err(TimeoutError),
}
}
/// Timeout after a specific duration.
#[inline]
pub async fn timeout_after<F: Future>(
&self,
duration: Mono::Duration,
future: F,
) -> Result<F::Output, TimeoutError> {
self.timeout_at(Mono::now() + duration, future).await
}
/// Delay for some duration of time.
#[inline]
pub async fn delay(&self, duration: Mono::Duration) {
let now = Mono::now();
self.delay_until(now + duration).await;
}
/// Delay to some specific time instant.
pub async fn delay_until(&self, instant: Mono::Instant) {
if !self.initialized.load(Ordering::Relaxed) {
panic!(
"The timer queue is not initialized with a monotonic, you need to run `initialize`"
);
}
let mut first_run = true;
let queue = &self.queue;
let mut link = Link::new(WaitingWaker {
waker: poll_fn(|cx| Poll::Ready(cx.waker().clone())).await,
release_at: instant,
});
let marker = &AtomicUsize::new(0);
let dropper = OnDrop::new(|| {
queue.delete(marker.load(Ordering::Relaxed));
});
poll_fn(|_| {
if Mono::now() >= instant {
return Poll::Ready(());
}
if first_run {
first_run = false;
let (was_empty, addr) = queue.insert(&mut link);
marker.store(addr, Ordering::Relaxed);
if was_empty {
// Pend the monotonic handler if the queue was empty to setup the timer.
Mono::pend_interrupt();
}
}
Poll::Pending
})
.await;
// Make sure that our link is deleted from the list before we drop this stack
drop(dropper);
}
}
struct OnDrop<F: FnOnce()> {
f: core::mem::MaybeUninit<F>,
}
impl<F: FnOnce()> OnDrop<F> {
pub fn new(f: F) -> Self {
Self {
f: core::mem::MaybeUninit::new(f),
}
}
#[allow(unused)]
pub fn defuse(self) {
core::mem::forget(self)
}
}
impl<F: FnOnce()> Drop for OnDrop<F> {
fn drop(&mut self) {
unsafe { self.f.as_ptr().read()() }
}
}
// -------- Test program ---------
//
//
// use systick_monotonic::{Systick, TimerQueue};
//
// // same panicking *behavior* as `panic-probe` but doesn't print a panic message
// // this prevents the panic message being printed *twice* when `defmt::panic` is invoked
// #[defmt::panic_handler]
// fn panic() -> ! {
// cortex_m::asm::udf()
// }
//
// /// Terminates the application and makes `probe-run` exit with exit-code = 0
// pub fn exit() -> ! {
// loop {
// cortex_m::asm::bkpt();
// }
// }
//
// defmt::timestamp!("{=u64:us}", {
// let time_us: fugit::MicrosDurationU32 = MONO.now().duration_since_epoch().convert();
//
// time_us.ticks() as u64
// });
//
// make_systick_timer_queue!(MONO, Systick<1_000>);
//
// #[rtic::app(
// device = nrf52832_hal::pac,
// dispatchers = [SWI0_EGU0, SWI1_EGU1, SWI2_EGU2, SWI3_EGU3, SWI4_EGU4, SWI5_EGU5],
// )]
// mod app {
// use super::{Systick, MONO};
// use fugit::ExtU32;
//
// #[shared]
// struct Shared {}
//
// #[local]
// struct Local {}
//
// #[init]
// fn init(cx: init::Context) -> (Shared, Local) {
// defmt::println!("init");
//
// let systick = Systick::start(cx.core.SYST, 64_000_000);
//
// defmt::println!("initializing monotonic");
//
// MONO.initialize(systick);
//
// async_task::spawn().ok();
// async_task2::spawn().ok();
// async_task3::spawn().ok();
//
// (Shared {}, Local {})
// }
//
// #[idle]
// fn idle(_: idle::Context) -> ! {
// defmt::println!("idle");
//
// loop {
// core::hint::spin_loop();
// }
// }
//
// #[task]
// async fn async_task(_: async_task::Context) {
// loop {
// defmt::println!("async task waiting for 1 second");
// MONO.delay(1.secs()).await;
// }
// }
//
// #[task]
// async fn async_task2(_: async_task2::Context) {
// loop {
// defmt::println!(" async task 2 waiting for 0.5 second");
// MONO.delay(500.millis()).await;
// }
// }
//
// #[task]
// async fn async_task3(_: async_task3::Context) {
// loop {
// defmt::println!(" async task 3 waiting for 0.2 second");
// MONO.delay(200.millis()).await;
// }
// }
// }
//

View file

@ -0,0 +1,173 @@
//! ...
use core::marker::PhantomPinned;
use core::sync::atomic::{AtomicPtr, Ordering};
use critical_section as cs;
/// A sorted linked list for the timer queue.
pub struct LinkedList<T> {
head: AtomicPtr<Link<T>>,
}
impl<T> LinkedList<T> {
/// Create a new linked list.
pub const fn new() -> Self {
Self {
head: AtomicPtr::new(core::ptr::null_mut()),
}
}
}
impl<T: PartialOrd + Clone> LinkedList<T> {
/// Pop the first element in the queue if the closure returns true.
pub fn pop_if<F: FnOnce(&T) -> bool>(&self, f: F) -> Option<T> {
cs::with(|_| {
// Make sure all previous writes are visible
core::sync::atomic::fence(Ordering::SeqCst);
let head = self.head.load(Ordering::Relaxed);
// SAFETY: `as_ref` is safe as `insert` requires a valid reference to a link
if let Some(head) = unsafe { head.as_ref() } {
if f(&head.val) {
// Move head to the next element
self.head
.store(head.next.load(Ordering::Relaxed), Ordering::Relaxed);
// We read the value at head
let head_val = head.val.clone();
return Some(head_val);
}
}
None
})
}
/// Delete a link at an address.
pub fn delete(&self, addr: usize) {
cs::with(|_| {
// Make sure all previous writes are visible
core::sync::atomic::fence(Ordering::SeqCst);
let head = self.head.load(Ordering::Relaxed);
// SAFETY: `as_ref` is safe as `insert` requires a valid reference to a link
let head_ref = if let Some(head_ref) = unsafe { head.as_ref() } {
head_ref
} else {
// 1. List is empty, do nothing
return;
};
if head as *const _ as usize == addr {
// 2. Replace head with head.next
self.head
.store(head_ref.next.load(Ordering::Relaxed), Ordering::Relaxed);
return;
}
// 3. search list for correct node
let mut curr = head_ref;
let mut next = head_ref.next.load(Ordering::Relaxed);
// SAFETY: `as_ref` is safe as `insert` requires a valid reference to a link
while let Some(next_link) = unsafe { next.as_ref() } {
// Next is not null
if next as *const _ as usize == addr {
curr.next
.store(next_link.next.load(Ordering::Relaxed), Ordering::Relaxed);
return;
}
// Continue searching
curr = next_link;
next = next_link.next.load(Ordering::Relaxed);
}
})
}
/// Insert a new link into the linked list.
/// The return is (was_empty, address), where the address of the link is for use with `delete`.
pub fn insert(&self, val: &mut Link<T>) -> (bool, usize) {
cs::with(|_| {
let addr = val as *const _ as usize;
// Make sure all previous writes are visible
core::sync::atomic::fence(Ordering::SeqCst);
let head = self.head.load(Ordering::Relaxed);
// 3 cases to handle
// 1. List is empty, write to head
// SAFETY: `as_ref` is safe as `insert` requires a valid reference to a link
let head_ref = if let Some(head_ref) = unsafe { head.as_ref() } {
head_ref
} else {
self.head.store(val, Ordering::Relaxed);
return (true, addr);
};
// 2. val needs to go in first
if val.val < head_ref.val {
// Set current head as next of `val`
val.next.store(head, Ordering::Relaxed);
// `val` is now first in the queue
self.head.store(val, Ordering::Relaxed);
return (false, addr);
}
// 3. search list for correct place
let mut curr = head_ref;
let mut next = head_ref.next.load(Ordering::Relaxed);
// SAFETY: `as_ref` is safe as `insert` requires a valid reference to a link
while let Some(next_link) = unsafe { next.as_ref() } {
// Next is not null
if val.val < next_link.val {
// Replace next with `val`
val.next.store(next, Ordering::Relaxed);
// Insert `val`
curr.next.store(val, Ordering::Relaxed);
return (false, addr);
}
// Continue searching
curr = next_link;
next = next_link.next.load(Ordering::Relaxed);
}
// No next, write link to last position in list
curr.next.store(val, Ordering::Relaxed);
(false, addr)
})
}
}
/// A link in the linked list.
pub struct Link<T> {
val: T,
next: AtomicPtr<Link<T>>,
_up: PhantomPinned,
}
impl<T> Link<T> {
/// Create a new link.
pub const fn new(val: T) -> Self {
Self {
val,
next: AtomicPtr::new(core::ptr::null_mut()),
_up: PhantomPinned,
}
}
}

View file

@ -0,0 +1,60 @@
//! ...
/// # A monotonic clock / counter definition.
///
/// ## Correctness
///
/// The trait enforces that proper time-math is implemented between `Instant` and `Duration`. This
/// is a requirement on the time library that the user chooses to use.
pub trait Monotonic {
/// The time at time zero.
const ZERO: Self::Instant;
/// The type for instant, defining an instant in time.
///
/// **Note:** In all APIs in RTIC that use instants from this monotonic, this type will be used.
type Instant: Ord
+ Copy
+ core::ops::Add<Self::Duration, Output = Self::Instant>
+ core::ops::Sub<Self::Duration, Output = Self::Instant>
+ core::ops::Sub<Self::Instant, Output = Self::Duration>;
/// The type for duration, defining an duration of time.
///
/// **Note:** In all APIs in RTIC that use duration from this monotonic, this type will be used.
type Duration;
/// Get the current time.
fn now() -> Self::Instant;
/// Set the compare value of the timer interrupt.
///
/// **Note:** This method does not need to handle race conditions of the monotonic, the timer
/// queue in RTIC checks this.
fn set_compare(instant: Self::Instant);
/// Clear the compare interrupt flag.
fn clear_compare_flag();
/// Pend the timer's interrupt.
fn pend_interrupt();
/// Optional. Runs on interrupt before any timer queue handling.
fn on_interrupt() {}
/// Optional. This is used to save power, this is called when the timer queue is not empty.
///
/// Enabling and disabling the monotonic needs to propagate to `now` so that an instant
/// based of `now()` is still valid.
///
/// NOTE: This may be called more than once.
fn enable_timer() {}
/// Optional. This is used to save power, this is called when the timer queue is empty.
///
/// Enabling and disabling the monotonic needs to propagate to `now` so that an instant
/// based of `now()` is still valid.
///
/// NOTE: This may be called more than once.
fn disable_timer() {}
}

View file

@ -1,421 +0,0 @@
//! An intrusive sorted priority linked list, designed for use in `Future`s in RTIC.
use core::cmp::Ordering;
use core::fmt;
use core::marker::PhantomData;
use core::ops::{Deref, DerefMut};
use core::ptr::NonNull;
/// Marker for Min sorted [`IntrusiveSortedLinkedList`].
pub struct Min;
/// Marker for Max sorted [`IntrusiveSortedLinkedList`].
pub struct Max;
/// The linked list kind: min-list or max-list
pub trait Kind: private::Sealed {
#[doc(hidden)]
fn ordering() -> Ordering;
}
impl Kind for Min {
fn ordering() -> Ordering {
Ordering::Less
}
}
impl Kind for Max {
fn ordering() -> Ordering {
Ordering::Greater
}
}
/// Sealed traits
mod private {
pub trait Sealed {}
}
impl private::Sealed for Max {}
impl private::Sealed for Min {}
/// A node in the [`IntrusiveSortedLinkedList`].
pub struct Node<T> {
pub val: T,
next: Option<NonNull<Node<T>>>,
}
impl<T> Node<T> {
pub fn new(val: T) -> Self {
Self { val, next: None }
}
}
/// The linked list.
pub struct IntrusiveSortedLinkedList<'a, T, K> {
head: Option<NonNull<Node<T>>>,
_kind: PhantomData<K>,
_lt: PhantomData<&'a ()>,
}
impl<'a, T, K> fmt::Debug for IntrusiveSortedLinkedList<'a, T, K>
where
T: Ord + core::fmt::Debug,
K: Kind,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut l = f.debug_list();
let mut current = self.head;
while let Some(head) = current {
let head = unsafe { head.as_ref() };
current = head.next;
l.entry(&head.val);
}
l.finish()
}
}
impl<'a, T, K> IntrusiveSortedLinkedList<'a, T, K>
where
T: Ord,
K: Kind,
{
pub const fn new() -> Self {
Self {
head: None,
_kind: PhantomData,
_lt: PhantomData,
}
}
// Push to the list.
pub fn push(&mut self, new: &'a mut Node<T>) {
unsafe {
if let Some(head) = self.head {
if head.as_ref().val.cmp(&new.val) != K::ordering() {
// This is newer than head, replace head
new.next = self.head;
self.head = Some(NonNull::new_unchecked(new));
} else {
// It's not head, search the list for the correct placement
let mut current = head;
while let Some(next) = current.as_ref().next {
if next.as_ref().val.cmp(&new.val) != K::ordering() {
break;
}
current = next;
}
new.next = current.as_ref().next;
current.as_mut().next = Some(NonNull::new_unchecked(new));
}
} else {
// List is empty, place at head
self.head = Some(NonNull::new_unchecked(new))
}
}
}
/// Get an iterator over the sorted list.
pub fn iter(&self) -> Iter<'_, T, K> {
Iter {
_list: self,
index: self.head,
}
}
/// Find an element in the list that can be changed and resorted.
pub fn find_mut<F>(&mut self, mut f: F) -> Option<FindMut<'_, 'a, T, K>>
where
F: FnMut(&T) -> bool,
{
let head = self.head?;
// Special-case, first element
if f(&unsafe { head.as_ref() }.val) {
return Some(FindMut {
is_head: true,
prev_index: None,
index: self.head,
list: self,
maybe_changed: false,
});
}
let mut current = head;
while let Some(next) = unsafe { current.as_ref() }.next {
if f(&unsafe { next.as_ref() }.val) {
return Some(FindMut {
is_head: false,
prev_index: Some(current),
index: Some(next),
list: self,
maybe_changed: false,
});
}
current = next;
}
None
}
/// Peek at the first element.
pub fn peek(&self) -> Option<&T> {
self.head.map(|head| unsafe { &head.as_ref().val })
}
/// Pops the first element in the list.
///
/// Complexity is worst-case `O(1)`.
pub fn pop(&mut self) -> Option<&'a Node<T>> {
if let Some(head) = self.head {
let v = unsafe { head.as_ref() };
self.head = v.next;
Some(v)
} else {
None
}
}
/// Checks if the linked list is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.head.is_none()
}
}
/// Iterator for the linked list.
pub struct Iter<'a, T, K>
where
T: Ord,
K: Kind,
{
_list: &'a IntrusiveSortedLinkedList<'a, T, K>,
index: Option<NonNull<Node<T>>>,
}
impl<'a, T, K> Iterator for Iter<'a, T, K>
where
T: Ord,
K: Kind,
{
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
let index = self.index?;
let node = unsafe { index.as_ref() };
self.index = node.next;
Some(&node.val)
}
}
/// Comes from [`IntrusiveSortedLinkedList::find_mut`].
pub struct FindMut<'a, 'b, T, K>
where
T: Ord + 'b,
K: Kind,
{
list: &'a mut IntrusiveSortedLinkedList<'b, T, K>,
is_head: bool,
prev_index: Option<NonNull<Node<T>>>,
index: Option<NonNull<Node<T>>>,
maybe_changed: bool,
}
impl<'a, 'b, T, K> FindMut<'a, 'b, T, K>
where
T: Ord,
K: Kind,
{
unsafe fn pop_internal(&mut self) -> &'b mut Node<T> {
if self.is_head {
// If it is the head element, we can do a normal pop
let mut head = self.list.head.unwrap_unchecked();
let v = head.as_mut();
self.list.head = v.next;
v
} else {
// Somewhere in the list
let mut prev = self.prev_index.unwrap_unchecked();
let mut curr = self.index.unwrap_unchecked();
// Re-point the previous index
prev.as_mut().next = curr.as_ref().next;
curr.as_mut()
}
}
/// This will pop the element from the list.
///
/// Complexity is worst-case `O(1)`.
#[inline]
pub fn pop(mut self) -> &'b mut Node<T> {
unsafe { self.pop_internal() }
}
/// This will resort the element into the correct position in the list if needed. The resorting
/// will only happen if the element has been accessed mutably.
///
/// Same as calling `drop`.
///
/// Complexity is worst-case `O(N)`.
#[inline]
pub fn finish(self) {
drop(self)
}
}
impl<'b, T, K> Drop for FindMut<'_, 'b, T, K>
where
T: Ord + 'b,
K: Kind,
{
fn drop(&mut self) {
// Only resort the list if the element has changed
if self.maybe_changed {
unsafe {
let val = self.pop_internal();
self.list.push(val);
}
}
}
}
impl<T, K> Deref for FindMut<'_, '_, T, K>
where
T: Ord,
K: Kind,
{
type Target = T;
fn deref(&self) -> &Self::Target {
unsafe { &self.index.unwrap_unchecked().as_ref().val }
}
}
impl<T, K> DerefMut for FindMut<'_, '_, T, K>
where
T: Ord,
K: Kind,
{
fn deref_mut(&mut self) -> &mut Self::Target {
self.maybe_changed = true;
unsafe { &mut self.index.unwrap_unchecked().as_mut().val }
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn const_new() {
static mut _V1: IntrusiveSortedLinkedList<u32, Max> = IntrusiveSortedLinkedList::new();
}
#[test]
fn test_peek() {
let mut ll: IntrusiveSortedLinkedList<u32, Max> = IntrusiveSortedLinkedList::new();
let mut a = Node { val: 1, next: None };
ll.push(&mut a);
assert_eq!(ll.peek().unwrap(), &1);
let mut a = Node { val: 2, next: None };
ll.push(&mut a);
assert_eq!(ll.peek().unwrap(), &2);
let mut a = Node { val: 3, next: None };
ll.push(&mut a);
assert_eq!(ll.peek().unwrap(), &3);
let mut ll: IntrusiveSortedLinkedList<u32, Min> = IntrusiveSortedLinkedList::new();
let mut a = Node { val: 2, next: None };
ll.push(&mut a);
assert_eq!(ll.peek().unwrap(), &2);
let mut a = Node { val: 1, next: None };
ll.push(&mut a);
assert_eq!(ll.peek().unwrap(), &1);
let mut a = Node { val: 3, next: None };
ll.push(&mut a);
assert_eq!(ll.peek().unwrap(), &1);
}
#[test]
fn test_empty() {
let ll: IntrusiveSortedLinkedList<u32, Max> = IntrusiveSortedLinkedList::new();
assert!(ll.is_empty())
}
#[test]
fn test_updating() {
let mut ll: IntrusiveSortedLinkedList<u32, Max> = IntrusiveSortedLinkedList::new();
let mut a = Node { val: 1, next: None };
ll.push(&mut a);
let mut a = Node { val: 2, next: None };
ll.push(&mut a);
let mut a = Node { val: 3, next: None };
ll.push(&mut a);
let mut find = ll.find_mut(|v| *v == 2).unwrap();
*find += 1000;
find.finish();
assert_eq!(ll.peek().unwrap(), &1002);
let mut find = ll.find_mut(|v| *v == 3).unwrap();
*find += 1000;
find.finish();
assert_eq!(ll.peek().unwrap(), &1003);
// Remove largest element
ll.find_mut(|v| *v == 1003).unwrap().pop();
assert_eq!(ll.peek().unwrap(), &1002);
}
#[test]
fn test_updating_1() {
let mut ll: IntrusiveSortedLinkedList<u32, Max> = IntrusiveSortedLinkedList::new();
let mut a = Node { val: 1, next: None };
ll.push(&mut a);
let v = ll.pop().unwrap();
assert_eq!(v.val, 1);
}
#[test]
fn test_updating_2() {
let mut ll: IntrusiveSortedLinkedList<u32, Max> = IntrusiveSortedLinkedList::new();
let mut a = Node { val: 1, next: None };
ll.push(&mut a);
let mut find = ll.find_mut(|v| *v == 1).unwrap();
*find += 1000;
find.finish();
assert_eq!(ll.peek().unwrap(), &1001);
}
}

6
rtic/.gitignore vendored Normal file
View file

@ -0,0 +1,6 @@
**/*.rs.bk
.#*
.gdb_history
/target
Cargo.lock
*.hex

Some files were not shown because too many files have changed in this diff Show more