1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
//! [`Monotonic`](rtic_time::Monotonic) implementation for the nRF Real Time Clocks (RTC).
//!
//! # Example
//!
//! ```
//! use rtic_monotonics::nrf::rtc::prelude::*;
//! nrf_rtc0_monotonic!(Mono);
//!
//! fn init() {
//! # // This is normally provided by the selected PAC
//! # let rtc = unsafe { core::mem::transmute(()) };
//! // Start the monotonic
//! Mono::start(rtc);
//! }
//!
//! async fn usage() {
//! loop {
//! // Use the monotonic
//! let timestamp = Mono::now();
//! Mono::delay(100.millis()).await;
//! }
//! }
//! ```
/// Common definitions and traits for using the nRF RTC monotonics
pub mod prelude {
pub use crate::nrf_rtc0_monotonic;
pub use crate::nrf_rtc1_monotonic;
#[cfg(any(feature = "nrf52832", feature = "nrf52833", feature = "nrf52840"))]
pub use crate::nrf_rtc2_monotonic;
pub use crate::Monotonic;
pub use fugit::{self, ExtU64, ExtU64Ceil};
}
#[cfg(feature = "nrf52805")]
#[doc(hidden)]
pub use nrf52805_pac::{self as pac, RTC0, RTC1};
#[cfg(feature = "nrf52810")]
#[doc(hidden)]
pub use nrf52810_pac::{self as pac, RTC0, RTC1};
#[cfg(feature = "nrf52811")]
#[doc(hidden)]
pub use nrf52811_pac::{self as pac, RTC0, RTC1};
#[cfg(feature = "nrf52832")]
#[doc(hidden)]
pub use nrf52832_pac::{self as pac, RTC0, RTC1, RTC2};
#[cfg(feature = "nrf52833")]
#[doc(hidden)]
pub use nrf52833_pac::{self as pac, RTC0, RTC1, RTC2};
#[cfg(feature = "nrf52840")]
#[doc(hidden)]
pub use nrf52840_pac::{self as pac, RTC0, RTC1, RTC2};
#[cfg(feature = "nrf5340-app")]
#[doc(hidden)]
pub use nrf5340_app_pac::{self as pac, RTC0_NS as RTC0, RTC1_NS as RTC1};
#[cfg(feature = "nrf5340-net")]
#[doc(hidden)]
pub use nrf5340_net_pac::{self as pac, RTC0_NS as RTC0, RTC1_NS as RTC1};
#[cfg(feature = "nrf9160")]
#[doc(hidden)]
pub use nrf9160_pac::{self as pac, RTC0_NS as RTC0, RTC1_NS as RTC1};
use portable_atomic::{AtomicU32, Ordering};
use rtic_time::{
half_period_counter::calculate_now,
timer_queue::{TimerQueue, TimerQueueBackend},
};
#[doc(hidden)]
#[macro_export]
macro_rules! __internal_create_nrf_rtc_interrupt {
($mono_backend:ident, $rtc:ident) => {
#[no_mangle]
#[allow(non_snake_case)]
unsafe extern "C" fn $rtc() {
use $crate::TimerQueueBackend;
$crate::nrf::rtc::$mono_backend::timer_queue().on_monotonic_interrupt();
}
};
}
#[doc(hidden)]
#[macro_export]
macro_rules! __internal_create_nrf_rtc_struct {
($name:ident, $mono_backend:ident, $timer:ident) => {
/// A `Monotonic` based on the nRF RTC peripheral.
pub struct $name;
impl $name {
/// Starts the `Monotonic`.
///
/// This method must be called only once.
pub fn start(rtc: $crate::nrf::rtc::$timer) {
$crate::__internal_create_nrf_rtc_interrupt!($mono_backend, $timer);
$crate::nrf::rtc::$mono_backend::_start(rtc);
}
}
impl $crate::TimerQueueBasedMonotonic for $name {
type Backend = $crate::nrf::rtc::$mono_backend;
type Instant = $crate::fugit::Instant<
<Self::Backend as $crate::TimerQueueBackend>::Ticks,
1,
32_768,
>;
type Duration = $crate::fugit::Duration<
<Self::Backend as $crate::TimerQueueBackend>::Ticks,
1,
32_768,
>;
}
$crate::rtic_time::impl_embedded_hal_delay_fugit!($name);
$crate::rtic_time::impl_embedded_hal_async_delay_fugit!($name);
};
}
/// Create an RTC0 based monotonic and register the RTC0 interrupt for it.
///
/// See [`crate::nrf::rtc`] for more details.
#[macro_export]
macro_rules! nrf_rtc0_monotonic {
($name:ident) => {
$crate::__internal_create_nrf_rtc_struct!($name, Rtc0Backend, RTC0);
};
}
/// Create an RTC1 based monotonic and register the RTC1 interrupt for it.
///
/// See [`crate::nrf::rtc`] for more details.
#[macro_export]
macro_rules! nrf_rtc1_monotonic {
($name:ident) => {
$crate::__internal_create_nrf_rtc_struct!($name, Rtc1Backend, RTC1);
};
}
/// Create an RTC2 based monotonic and register the RTC2 interrupt for it.
///
/// See [`crate::nrf::rtc`] for more details.
#[cfg(any(feature = "nrf52832", feature = "nrf52833", feature = "nrf52840"))]
#[cfg_attr(
docsrs,
doc(cfg(any(feature = "nrf52832", feature = "nrf52833", feature = "nrf52840")))
)]
#[macro_export]
macro_rules! nrf_rtc2_monotonic {
($name:ident) => {
$crate::__internal_create_nrf_rtc_struct!($name, Rtc2Backend, RTC2);
};
}
struct TimerValueU24(u32);
impl rtic_time::half_period_counter::TimerValue for TimerValueU24 {
const BITS: u32 = 24;
}
impl From<TimerValueU24> for u64 {
fn from(value: TimerValueU24) -> Self {
Self::from(value.0)
}
}
macro_rules! make_rtc {
($backend_name:ident, $rtc:ident, $overflow:ident, $tq:ident$(, doc: ($($doc:tt)*))?) => {
/// RTC based [`TimerQueueBackend`].
$(
#[cfg_attr(docsrs, doc(cfg($($doc)*)))]
)?
pub struct $backend_name;
static $overflow: AtomicU32 = AtomicU32::new(0);
static $tq: TimerQueue<$backend_name> = TimerQueue::new();
impl $backend_name {
/// Starts the timer.
///
/// **Do not use this function directly.**
///
/// Use the prelude macros instead.
pub fn _start(rtc: $rtc) {
unsafe { rtc.prescaler.write(|w| w.bits(0)) };
// Disable interrupts, as preparation
rtc.intenclr.write(|w| w
.compare0().clear()
.compare1().clear()
.ovrflw().clear()
);
// Configure compare registers
rtc.cc[0].write(|w| unsafe { w.bits(0) }); // Dynamic wakeup
rtc.cc[1].write(|w| unsafe { w.bits(0x80_0000) }); // Half-period
// Timing critical, make sure we don't get interrupted
critical_section::with(|_|{
// Reset the timer
rtc.tasks_clear.write(|w| unsafe { w.bits(1) });
rtc.tasks_start.write(|w| unsafe { w.bits(1) });
// Clear pending events.
// Should be close enough to the timer reset that we don't miss any events.
rtc.events_ovrflw.write(|w| w);
rtc.events_compare[0].write(|w| w);
rtc.events_compare[1].write(|w| w);
// Make sure overflow counter is synced with the timer value
$overflow.store(0, Ordering::SeqCst);
// Initialized the timer queue
$tq.initialize(Self {});
// Enable interrupts.
// Should be close enough to the timer reset that we don't miss any events.
rtc.intenset.write(|w| w
.compare0().set()
.compare1().set()
.ovrflw().set()
);
rtc.evtenset.write(|w| w
.compare0().set()
.compare1().set()
.ovrflw().set()
);
});
// SAFETY: We take full ownership of the peripheral and interrupt vector,
// plus we are not using any external shared resources so we won't impact
// basepri/source masking based critical sections.
unsafe {
crate::set_monotonic_prio(pac::NVIC_PRIO_BITS, pac::Interrupt::$rtc);
pac::NVIC::unmask(pac::Interrupt::$rtc);
}
}
}
impl TimerQueueBackend for $backend_name {
type Ticks = u64;
fn now() -> Self::Ticks {
let rtc = unsafe { &*$rtc::PTR };
calculate_now(
|| $overflow.load(Ordering::Relaxed),
|| TimerValueU24(rtc.counter.read().bits())
)
}
fn on_interrupt() {
let rtc = unsafe { &*$rtc::PTR };
if rtc.events_ovrflw.read().bits() == 1 {
rtc.events_ovrflw.write(|w| unsafe { w.bits(0) });
let prev = $overflow.fetch_add(1, Ordering::Relaxed);
assert!(prev % 2 == 1, "Monotonic must have skipped an interrupt!");
}
if rtc.events_compare[1].read().bits() == 1 {
rtc.events_compare[1].write(|w| unsafe { w.bits(0) });
let prev = $overflow.fetch_add(1, Ordering::Relaxed);
assert!(prev % 2 == 0, "Monotonic must have skipped an interrupt!");
}
}
fn set_compare(mut instant: Self::Ticks) {
let rtc = unsafe { &*$rtc::PTR };
const MAX: u64 = 0xff_ffff;
// Disable interrupts because this section is timing critical.
// We rely on the fact that this entire section runs within one
// RTC clock tick. (which it will do easily if it doesn't get
// interrupted)
critical_section::with(|_|{
let now = Self::now();
// wrapping_sub deals with the u64 overflow corner case
let diff = instant.wrapping_sub(now);
let val = if diff <= MAX {
// Now we know `instant` whill happen within one `MAX` time duration.
// Errata: Timer interrupts don't fire if they are scheduled less than
// two ticks in the future. Make it three, because the timer could
// tick right now.
if diff < 3 {
instant = now.wrapping_add(3);
}
(instant & MAX) as u32
} else {
0
};
unsafe { rtc.cc[0].write(|w| w.bits(val)) };
});
}
fn clear_compare_flag() {
let rtc = unsafe { &*$rtc::PTR };
unsafe { rtc.events_compare[0].write(|w| w.bits(0)) };
}
fn pend_interrupt() {
pac::NVIC::pend(pac::Interrupt::$rtc);
}
fn timer_queue() -> &'static TimerQueue<Self> {
&$tq
}
}
};
}
make_rtc!(Rtc0Backend, RTC0, RTC0_OVERFLOWS, RTC0_TQ);
make_rtc!(Rtc1Backend, RTC1, RTC1_OVERFLOWS, RTC1_TQ);
#[cfg(any(feature = "nrf52832", feature = "nrf52833", feature = "nrf52840"))]
make_rtc!(Rtc2Backend, RTC2, RTC2_OVERFLOWS, RTC2_TQ, doc: (any(feature = "nrf52832", feature = "nrf52833", feature = "nrf52840")));