# Notes for lock optimization ## Idea We are reading BASEPRI independently if and only if we are actually changing BASEPRI. On restoring BASEPRI chose to restore read value if at the outmost nesting level (initial priority of the task). In this way, we can avoid unnecessary BASEPRI accesses, and reduce register pressure. If you want to play around checkout the `lockopt` branch and use: ``` shell > arm-none-eabi-objdump target/thumbv7m-none-eabi/release/examples/lockopt -d > lockopt.asm ``` We extend `cortex-m-rtfm/src/export::Priority` with an additional fields to store `init_logic` (priority of the task) and `old_basepri_hw`. The latter field is initially `None` on creation. ``` Rust // Newtype over `Cell` that forbids mutation through a shared reference pub struct Priority { init_logic: u8, current_logic: Cell, #[cfg(armv7m)] old_basepri_hw: Cell>, } impl Priority { #[inline(always)] pub unsafe fn new(value: u8) -> Self { Priority { init_logic: value, current_logic: Cell::new(value), old_basepri_hw: Cell::new(None), } } #[inline(always)] fn set_logic(&self, value: u8) { self.current_logic.set(value) } #[inline(always)] fn get_logic(&self) -> u8 { self.current_logic.get() } #[inline(always)] fn get_init_logic(&self) -> u8 { self.init_logic } #[cfg(armv7m)] #[inline(always)] fn get_old_basepri_hw(&self) -> Option { self.old_basepri_hw.get() } #[cfg(armv7m)] #[inline(always)] fn set_old_basepri_hw(&self, value: u8) { self.old_basepri_hw.set(Some(value)); } } ``` The corresponding `lock` is implemented as follows: ``` Rust #[cfg(armv7m)] #[inline(always)] pub unsafe fn lock( ptr: *mut T, priority: &Priority, ceiling: u8, nvic_prio_bits: u8, f: impl FnOnce(&mut T) -> R, ) -> R { let current = priority.get_logic(); if current < ceiling { if ceiling == (1 << nvic_prio_bits) { priority.set_logic(u8::max_value()); let r = interrupt::free(|_| f(&mut *ptr)); priority.set_logic(current); r } else { match priority.get_old_basepri_hw() { None => priority.set_old_basepri_hw(basepri::read()), _ => (), }; priority.set_logic(ceiling); basepri::write(logical2hw(ceiling, nvic_prio_bits)); let r = f(&mut *ptr); if current == priority.get_init_logic() { basepri::write(priority.get_old_basepri_hw().unwrap()); } else { basepri::write(logical2hw(priority.get_logic(), nvic_prio_bits)); } priority.set_logic(current); r } } else { f(&mut *ptr) } } ``` The highest priority is achieved through an `interrupt_free` and does not at all affect the `BASEPRI`. For the normal case, on enter we check if the BASEPRI register has been read, if not we read it and update `priority`. On exit we check if are to restore a logical priority (inside a nested lock) or to restore the BASEPRI (previously read). ## Safety We can safely `unwrap` the `get_old_basepri_hw: Option` as the path leading up to the `unwrap` passes an update to `Some` or was already `Some`. Updating `get_old_basepri_hw` is monotonic, the API offers no way of making `get_old_basepri_hw` into `None` (besides `new`). Moreover `new` is the only public function of `Priority`, thus we are exposing nothing dangerous to the user. ## Implementation Implementation mainly regards two files, the `rtfm/src/export.rs` (discussed above) and `macros/src/codegen/hardware_tasks.rs`. For the latter the task dispatcher is updated as follows: ``` Rust ... const_app.push(quote!( #[allow(non_snake_case)] #[no_mangle] #section #cfg_core unsafe fn #symbol() { const PRIORITY: u8 = #priority; #let_instant crate::#name( #locals_new #name::Context::new(&rtfm::export::Priority::new(PRIORITY) #instant) ); } )); ... ``` Basically we create `Priority` (on stack) and use that to create a `Context`. The beauty is that LLVM is completely optimizing out the data structure (and related code), but taking into account its implications to control flow. Thus, the locks AND initial reading of BASEPRI will be optimized at compile time at Zero cost. Overall, using this approach, we don't need a trampoline (`run`). We reduce the overhead by at least two machine instructions (additional reading/writing of BASEPRI) for each interrupt. It also reduces the register pressure (as less information needs to be stored). ## Evaluation The `examples/lockopt.rs` shows that locks are effectively optimized out. ``` asm 00000132 : 132: b510 push {r4, lr} 134: f000 f893 bl 25e <__basepri_r> 138: 4604 mov r4, r0 13a: 20a0 movs r0, #160 ; 0xa0 13c: f000 f892 bl 264 <__basepri_w> 140: f240 0000 movw r0, #0 144: f2c2 0000 movt r0, #8192 ; 0x2000 148: 6801 ldr r1, [r0, #0] 14a: 3101 adds r1, #1 14c: 6001 str r1, [r0, #0] 14e: 4620 mov r0, r4 150: e8bd 4010 ldmia.w sp!, {r4, lr} 154: f000 b886 b.w 264 <__basepri_w> 00000158 : 158: f240 0000 movw r0, #0 15c: f2c2 0000 movt r0, #8192 ; 0x2000 160: 6801 ldr r1, [r0, #0] 162: 3102 adds r1, #2 164: 6001 str r1, [r0, #0] 166: 4770 bx lr ``` GPIOB/C are sharing a resource (C higher prio). Notice, there is no BASEPRI manipulation at all. For GPIOB, there is a single read of BASEPRI (stored in `old_basepri_hw`) and just two writes, one for entering critical section, one for exiting. On exit we detect that we are indeed at the initial priority for the task, thus we restore the `old_basepri_hw` instead of a logic priority. ## Limitations and Drawbacks None spotted so far. ## Observations ``` shell > llvm-objdump target/thumbv7m-none-eabi/release/examples/lockopt -d > lockopt.asm > cargo objdump --example lockopt --release -- -d > lockopt.asm ``` Neither give assembly dump with symbols (very annoying to rely on `arm-none-eabi-objdump` for proper objdumps), maybe just an option is missing?