1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
//! [`Monotonic`](rtic_time::Monotonic) implementations for i.MX RT's GPT peripherals.
//!
//! # Example
//!
//! ```
//! use rtic_monotonics::imxrt::prelude::*;
//! imxrt_gpt1_monotonic!(Mono, 1_000_000);
//!
//! fn init() {
//! // Obtain ownership of the timer register block.
//! let gpt1 = unsafe { imxrt_ral::gpt::GPT1::instance() };
//!
//! // Configure the timer tick rate as specified earlier
//! todo!("Configure the gpt1 peripheral to a tick rate of 1_000_000");
//!
//! // Start the monotonic
//! Mono::start(gpt1);
//! }
//!
//! async fn usage() {
//! loop {
//! // Use the monotonic
//! let timestamp = Mono::now();
//! Mono::delay(100.millis()).await;
//! }
//! }
//! ```
use portable_atomic::{AtomicU32, Ordering};
use rtic_time::{
half_period_counter::calculate_now,
timer_queue::{TimerQueue, TimerQueueBackend},
};
pub use imxrt_ral as ral;
/// Common definitions and traits for using the i.MX RT monotonics
pub mod prelude {
#[cfg(feature = "imxrt_gpt1")]
pub use crate::imxrt_gpt1_monotonic;
#[cfg(feature = "imxrt_gpt2")]
pub use crate::imxrt_gpt2_monotonic;
pub use crate::Monotonic;
pub use fugit::{self, ExtU64, ExtU64Ceil};
}
#[doc(hidden)]
#[macro_export]
macro_rules! __internal_create_imxrt_timer_interrupt {
($mono_backend:ident, $timer:ident) => {
#[no_mangle]
#[allow(non_snake_case)]
unsafe extern "C" fn $timer() {
use $crate::TimerQueueBackend;
$crate::imxrt::$mono_backend::timer_queue().on_monotonic_interrupt();
}
};
}
#[doc(hidden)]
#[macro_export]
macro_rules! __internal_create_imxrt_timer_struct {
($name:ident, $mono_backend:ident, $timer:ident, $tick_rate_hz:expr) => {
/// A `Monotonic` based on the GPT peripheral.
pub struct $name;
impl $name {
/// Starts the `Monotonic`.
///
/// This method must be called only once.
pub fn start(gpt: $crate::imxrt::ral::gpt::$timer) {
$crate::__internal_create_imxrt_timer_interrupt!($mono_backend, $timer);
$crate::imxrt::$mono_backend::_start(gpt);
}
}
impl $crate::TimerQueueBasedMonotonic for $name {
type Backend = $crate::imxrt::$mono_backend;
type Instant = $crate::fugit::Instant<
<Self::Backend as $crate::TimerQueueBackend>::Ticks,
1,
{ $tick_rate_hz },
>;
type Duration = $crate::fugit::Duration<
<Self::Backend as $crate::TimerQueueBackend>::Ticks,
1,
{ $tick_rate_hz },
>;
}
$crate::rtic_time::impl_embedded_hal_delay_fugit!($name);
$crate::rtic_time::impl_embedded_hal_async_delay_fugit!($name);
};
}
/// Create a GPT1 based monotonic and register the GPT1 interrupt for it.
///
/// See [`crate::imxrt`] for more details.
///
/// # Arguments
///
/// * `name` - The name that the monotonic type will have.
/// * `tick_rate_hz` - The tick rate of the timer peripheral. It's the user's responsibility
/// to configure the peripheral to the given frequency before starting the
/// monotonic.
#[cfg(feature = "imxrt_gpt1")]
#[macro_export]
macro_rules! imxrt_gpt1_monotonic {
($name:ident, $tick_rate_hz:expr) => {
$crate::__internal_create_imxrt_timer_struct!($name, Gpt1Backend, GPT1, $tick_rate_hz);
};
}
/// Create a GPT2 based monotonic and register the GPT2 interrupt for it.
///
/// See [`crate::imxrt`] for more details.
///
/// # Arguments
///
/// * `name` - The name that the monotonic type will have.
/// * `tick_rate_hz` - The tick rate of the timer peripheral. It's the user's responsibility
/// to configure the peripheral to the given frequency before starting the
/// monotonic.
#[cfg(feature = "imxrt_gpt2")]
#[macro_export]
macro_rules! imxrt_gpt2_monotonic {
($name:ident, $tick_rate_hz:expr) => {
$crate::__internal_create_imxrt_timer_struct!($name, Gpt2Backend, GPT2, $tick_rate_hz);
};
}
macro_rules! make_timer {
($mono_name:ident, $backend_name:ident, $timer:ident, $period:ident, $tq:ident$(, doc: ($($doc:tt)*))?) => {
/// GPT based [`TimerQueueBackend`].
$(
#[cfg_attr(docsrs, doc(cfg($($doc)*)))]
)?
pub struct $backend_name;
use ral::gpt::$timer;
/// Number of 2^31 periods elapsed since boot.
static $period: AtomicU32 = AtomicU32::new(0);
static $tq: TimerQueue<$backend_name> = TimerQueue::new();
impl $backend_name {
/// Starts the timer.
///
/// **Do not use this function directly.**
///
/// Use the prelude macros instead.
pub fn _start(gpt: $timer) {
// Disable the timer.
ral::modify_reg!(ral::gpt, gpt, CR, EN: 0);
// Clear all status registers.
ral::write_reg!(ral::gpt, gpt, SR, 0b11_1111);
// Base configuration
ral::modify_reg!(ral::gpt, gpt, CR,
ENMOD: 1, // Clear timer state
FRR: 1, // Free-Run mode
);
// Reset period
$period.store(0, Ordering::SeqCst);
// Enable interrupts
ral::write_reg!(ral::gpt, gpt, IR,
ROVIE: 1, // Rollover interrupt
OF1IE: 1, // Timer compare 1 interrupt (for half-periods)
OF2IE: 1, // Timer compare 2 interrupt (for dynamic wakeup)
);
// Configure half-period interrupt
ral::write_reg!(ral::gpt, gpt, OCR[0], 0x8000_0000);
// Dynamic interrupt register; for now initialize to zero
// so it gets combined with rollover interrupt
ral::write_reg!(ral::gpt, gpt, OCR[1], 0x0000_0000);
// Initialize timer queue
$tq.initialize(Self {});
// Enable the timer
ral::modify_reg!(ral::gpt, gpt, CR, EN: 1);
ral::modify_reg!(ral::gpt, gpt, CR,
ENMOD: 0, // Keep state when disabled
);
// SAFETY: We take full ownership of the peripheral and interrupt vector,
// plus we are not using any external shared resources so we won't impact
// basepri/source masking based critical sections.
unsafe {
crate::set_monotonic_prio(ral::NVIC_PRIO_BITS, ral::Interrupt::$timer);
cortex_m::peripheral::NVIC::unmask(ral::Interrupt::$timer);
}
}
}
impl TimerQueueBackend for $backend_name {
type Ticks = u64;
fn now() -> Self::Ticks {
let gpt = unsafe{ $timer::instance() };
calculate_now(
|| $period.load(Ordering::Relaxed),
|| ral::read_reg!(ral::gpt, gpt, CNT)
)
}
fn set_compare(instant: Self::Ticks) {
let gpt = unsafe{ $timer::instance() };
// Set the timer regardless of whether it is multiple periods in the future,
// or even already in the past.
// The worst thing that can happen is a spurious wakeup, and with a timer
// period of half an hour, this is hardly a problem.
let ticks_wrapped = instant as u32;
ral::write_reg!(ral::gpt, gpt, OCR[1], ticks_wrapped);
}
fn clear_compare_flag() {
let gpt = unsafe{ $timer::instance() };
ral::write_reg!(ral::gpt, gpt, SR, OF2: 1);
}
fn pend_interrupt() {
cortex_m::peripheral::NVIC::pend(ral::Interrupt::$timer);
}
fn on_interrupt() {
let gpt = unsafe{ $timer::instance() };
let (rollover, half_rollover) = ral::read_reg!(ral::gpt, gpt, SR, ROV, OF1);
if rollover != 0 {
let prev = $period.fetch_add(1, Ordering::Relaxed);
ral::write_reg!(ral::gpt, gpt, SR, ROV: 1);
assert!(prev % 2 == 1, "Monotonic must have skipped an interrupt!");
}
if half_rollover != 0 {
let prev = $period.fetch_add(1, Ordering::Relaxed);
ral::write_reg!(ral::gpt, gpt, SR, OF1: 1);
assert!(prev % 2 == 0, "Monotonic must have skipped an interrupt!");
}
}
fn timer_queue() -> &'static TimerQueue<Self> {
&$tq
}
}
};
}
#[cfg(feature = "imxrt_gpt1")]
make_timer!(Gpt1, Gpt1Backend, GPT1, GPT1_HALFPERIODS, GPT1_TQ);
#[cfg(feature = "imxrt_gpt2")]
make_timer!(Gpt2, Gpt2Backend, GPT2, GPT2_HALFPERIODS, GPT2_TQ);