rtic/rtic-time/src/lib.rs
2023-03-04 20:52:55 +01:00

273 lines
8.6 KiB
Rust

//! Crate
#![no_std]
#![deny(missing_docs)]
//deny_warnings_placeholder_for_ci
#![allow(incomplete_features)]
#![feature(async_fn_in_trait)]
use core::future::{poll_fn, Future};
use core::pin::Pin;
use core::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use core::task::{Poll, Waker};
use futures_util::{
future::{select, Either},
pin_mut,
};
use linked_list::{Link, LinkedList};
pub use monotonic::Monotonic;
use rtic_common::dropper::OnDrop;
mod linked_list;
mod monotonic;
/// Holds a waker and at which time instant this waker shall be awoken.
struct WaitingWaker<Mono: Monotonic> {
waker: Waker,
release_at: Mono::Instant,
was_poped: AtomicBool,
}
impl<Mono: Monotonic> Clone for WaitingWaker<Mono> {
fn clone(&self) -> Self {
Self {
waker: self.waker.clone(),
release_at: self.release_at,
was_poped: AtomicBool::new(self.was_poped.load(Ordering::Relaxed)),
}
}
}
impl<Mono: Monotonic> PartialEq for WaitingWaker<Mono> {
fn eq(&self, other: &Self) -> bool {
self.release_at == other.release_at
}
}
impl<Mono: Monotonic> PartialOrd for WaitingWaker<Mono> {
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
self.release_at.partial_cmp(&other.release_at)
}
}
/// A generic timer queue for async executors.
///
/// # Blocking
///
/// The internal priority queue uses global critical sections to manage access. This means that
/// `await`ing a delay will cause a lock of the entire system for O(n) time. In practice the lock
/// duration is ~10 clock cycles per element in the queue.
///
/// # Safety
///
/// This timer queue is based on an intrusive linked list, and by extension the links are strored
/// on the async stacks of callers. The links are deallocated on `drop` or when the wait is
/// complete.
///
/// Do not call `mem::forget` on an awaited future, or there will be dragons!
pub struct TimerQueue<Mono: Monotonic> {
queue: LinkedList<WaitingWaker<Mono>>,
initialized: AtomicBool,
}
/// This indicates that there was a timeout.
pub struct TimeoutError;
/// This is needed to make the async closure in `delay_until` accept that we "share"
/// the link possible between threads.
struct LinkPtr<Mono: Monotonic>(*mut Option<linked_list::Link<WaitingWaker<Mono>>>);
impl<Mono: Monotonic> Clone for LinkPtr<Mono> {
fn clone(&self) -> Self {
LinkPtr(self.0)
}
}
impl<Mono: Monotonic> LinkPtr<Mono> {
/// This will dereference the pointer stored within and give out an `&mut`.
unsafe fn get(&mut self) -> &mut Option<linked_list::Link<WaitingWaker<Mono>>> {
&mut *self.0
}
}
unsafe impl<Mono: Monotonic> Send for LinkPtr<Mono> {}
unsafe impl<Mono: Monotonic> Sync for LinkPtr<Mono> {}
impl<Mono: Monotonic> TimerQueue<Mono> {
/// Make a new queue.
pub const fn new() -> Self {
Self {
queue: LinkedList::new(),
initialized: AtomicBool::new(false),
}
}
/// Forwards the `Monotonic::now()` method.
#[inline(always)]
pub fn now(&self) -> Mono::Instant {
Mono::now()
}
/// Takes the initialized monotonic to initialize the TimerQueue.
pub fn initialize(&self, monotonic: Mono) {
self.initialized.store(true, Ordering::SeqCst);
// Don't run drop on `Mono`
core::mem::forget(monotonic);
}
/// Call this in the interrupt handler of the hardware timer supporting the `Monotonic`
///
/// # Safety
///
/// It's always safe to call, but it must only be called from the interrupt of the
/// monotonic timer for correct operation.
pub unsafe fn on_monotonic_interrupt(&self) {
Mono::clear_compare_flag();
Mono::on_interrupt();
loop {
let mut release_at = None;
let head = self.queue.pop_if(|head| {
release_at = Some(head.release_at);
let should_pop = Mono::now() >= head.release_at;
head.was_poped.store(should_pop, Ordering::Relaxed);
should_pop
});
match (head, release_at) {
(Some(link), _) => {
link.waker.wake();
}
(None, Some(instant)) => {
Mono::enable_timer();
Mono::set_compare(instant);
if Mono::now() >= instant {
// The time for the next instant passed while handling it,
// continue dequeueing
continue;
}
break;
}
(None, None) => {
// Queue is empty
Mono::disable_timer();
break;
}
}
}
}
/// Timeout at a specific time.
pub async fn timeout_at<F: Future>(
&self,
instant: Mono::Instant,
future: F,
) -> Result<F::Output, TimeoutError> {
let delay = self.delay_until(instant);
pin_mut!(future);
pin_mut!(delay);
match select(future, delay).await {
Either::Left((r, _)) => Ok(r),
Either::Right(_) => Err(TimeoutError),
}
}
/// Timeout after a specific duration.
#[inline]
pub async fn timeout_after<F: Future>(
&self,
duration: Mono::Duration,
future: F,
) -> Result<F::Output, TimeoutError> {
self.timeout_at(Mono::now() + duration, future).await
}
/// Delay for some duration of time.
#[inline]
pub async fn delay(&self, duration: Mono::Duration) {
let now = Mono::now();
self.delay_until(now + duration).await;
}
/// Delay to some specific time instant.
pub async fn delay_until(&self, instant: Mono::Instant) {
if !self.initialized.load(Ordering::Relaxed) {
panic!(
"The timer queue is not initialized with a monotonic, you need to run `initialize`"
);
}
let mut link_ptr: Option<linked_list::Link<WaitingWaker<Mono>>> = None;
// Make this future `Drop`-safe
// SAFETY(link_ptr): Shadow the original definition of `link_ptr` so we can't abuse it.
let mut link_ptr =
LinkPtr(&mut link_ptr as *mut Option<linked_list::Link<WaitingWaker<Mono>>>);
let mut link_ptr2 = link_ptr.clone();
let queue = &self.queue;
let marker = &AtomicUsize::new(0);
let dropper = OnDrop::new(|| {
queue.delete(marker.load(Ordering::Relaxed));
});
poll_fn(|cx| {
if Mono::now() >= instant {
return Poll::Ready(());
}
// SAFETY: This pointer is only dereferenced here and on drop of the future
// which happens outside this `poll_fn`'s stack frame, so this mutable access cannot
// happen at the same time as `dropper` runs.
let link = unsafe { link_ptr2.get() };
if link.is_none() {
let link_ref = link.insert(Link::new(WaitingWaker {
waker: cx.waker().clone(),
release_at: instant,
was_poped: AtomicBool::new(false),
}));
// SAFETY(new_unchecked): The address to the link is stable as it is defined
//outside this stack frame.
// SAFETY(insert): `link_ref` lifetime comes from `link_ptr` that is shadowed, and
// we make sure in `dropper` that the link is removed from the queue before
// dropping `link_ptr` AND `dropper` makes sure that the shadowed `link_ptr` lives
// until the end of the stack frame.
let (was_empty, addr) = unsafe { queue.insert(Pin::new_unchecked(link_ref)) };
marker.store(addr, Ordering::Relaxed);
if was_empty {
// Pend the monotonic handler if the queue was empty to setup the timer.
Mono::pend_interrupt();
}
}
Poll::Pending
})
.await;
// SAFETY: We only run this and dereference the pointer if we have
// exited the `poll_fn` below in the `drop(dropper)` call. The other dereference
// of this pointer is in the `poll_fn`.
if let Some(link) = unsafe { link_ptr.get() } {
if link.val.was_poped.load(Ordering::Relaxed) {
// If it was poped from the queue there is no need to run delete
dropper.defuse();
}
} else {
// Make sure that our link is deleted from the list before we drop this stack
drop(dropper);
}
}
}